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Self-consistent treatment of stabilization of resistive wall instabilities
in reversed field pinches by radio-frequency waves
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Stabilization of resistive wall magnetohydrodynamic~MHD! instabilities by the force applied by
injected radio-frequency~rf! waves is investigated, including the self-consistent effect of the MHD
perturbation upon the rf waves in the plasma. This effect leads to the generation of Alfve´nic
disturbances at the frequency of the rf waves and at the wavelength~in the magnetic surface! of the
MHD instability. Stabilization of the ideal external kink instability in the reversed field pinch is
considered. If the self-consistent response is neglected, rf waves are confined to the thin vacuum and
edge regions, and provide a restoring force which stabilizes the resistive wall instability at moderate
rf wave amplitude. However, the generation of Alfve´n disturbances causes the rf waves to penetrate
deeply into the plasma, eliminating the stabilization. ©2001 American Institute of Physics.
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I. INTRODUCTION

The stabilization of magnetohydrodynamic~MHD! in-
stabilities by the ponderomotive force from externally a
plied rf waves has been studied over the years in vari
venues. rf stabilization has been investigated for intercha
instabilities in mirror machines,1–4 external kinks in
tokamaks5,6 and Rayleigh–Taylor instabilities in liquid me
als ~see e.g., Ref. 7!. For plasmas, it generally appears th
stabilization requires applied rf fields of large amplitude.

In the past analysis of rf stabilization of external mod
the self-consistent effect of the MHD perturbation on the
waves has not been fully included. We include this eff
here, and find that self-consistency has a large effect on th
stabilization. We solve the problem for a particular case
interest—resistive wall instabilities in the reversed fie
pinch.

The resistive wall modes are potentially dangerous in
bilities in long-pulse reversed field pinch~RFP! experiments.
Several techniques have been proposed to stabilize t
modes in RFPs. One of them is the development of an ac
feedback stabilization systems~see e.g., Ref. 8!. The other is
the introduction of a rotating wall~see e.g., Ref. 9!. If suc-
cessful, the rf stabilization would be an attractive alternat
to these stabilizing methods.

In the reversed field pinch an ideal external kink mode
unstable in the absence of a conducting shell. In the pres
of a shell of finite resistivity the mode is still unstable, a
though its growth time is slowed approximately to the ele
trical penetration time of the shell. The resistive w
instability—a mode which becomes unstable when a p
fectly conducting shell is replaced by a resistive shell—
also important in other configurations such as advanced
kamaks and spherical tokamaks.

We consider that the plasma is surrounded by a t
vacuum region, which is bounded by a resistive wall. A
though the magnetic field of the growing MHD mode pe
etrates the wall, the higher frequency rf waves do not sign
5181070-664X/2001/8(12)/5181/11/$18.00
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cantly penetrate the wall. For the rf waves the wall appe
essentially as a perfect conductor. Hence, we may expect
rf wave energy density trapped between the highly condu
ing plasma and the wall will provide a restoring force on t
MHD perturbation of the plasma surface. This picture w
roughly apply if the rf waves do not penetrate deeply into
plasma.

For a RFP the magnetic field at the plasma edge
mainly poloidal. We consider the application of a paral
~poloidal! rf electric field with poloidal mode numberm
50. Such an electric field polarization will not genera
plasma flow or plasma waves in the equilibrium plasma
will simply decay resistively into the plasma. Them50
wave can be applied through an oscillating poloidal surfa
loop voltage. This may be practical if the rf wave frequen
is much less than the ion cyclotron frequency. This sim
picture holds true if we consider that the dielectric respo
of the rf waves to the MHD perturbation is that of an unma
netized plasma. In this case, the rf waves evanesce into
plasma a resistive skin depth. For realistic conditions
skin depth is sufficiently small that the rf energy, conce
trated to a small region, is strongly altered by the MH
perturbation and stabilizes the external kink resistive w
instability for rf wave of moderate amplitude~wave mag-
netic field much less than the equilibrium field!. This is quite
similar to the stabilization of the Rayleigh–Taylor instabili
in liquid metals.

If we consider the plasma dielectric properties to be t
of a magnetized plasma, the dynamics becomes more in
esting. The effect of the MHD perturbation of the surface
the rf waves leads to the generation of Alfve´nic disturbances.
The Alfvén disturbances are characterized by the freque
of the rf waves and the wave number~within the magnetic
surface! of the MHD perturbation. The perturbed surfac
generates two types of disturbances. A decaying wave wh
is a variant of a shear Alfve´n wave is generated. Were th
the only response then the rf waves would be confined to
1 © 2001 American Institute of Physics
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edge and vacuum region, yielding a strong stabilizing infl
ence. However, compressional waves which propagate
the plasma are also generated. The rf energy is no lon
trapped to the edge, and the stabilization vanishes.

The case of the unmagnetized dielectric response is
sented in Sec. II~where the perturbed rf pressure is calc
lated! and Sec. III~where the growth rates are calculated!.
The more realistic case of the magnetized plasma is
cussed in Sec. IV. We summarize in Sec. V.

II. SIMPLIFIED CONSIDERATION OF RF PRESSURE

We consider a cylindrical geometry shown in Fig. 1 wi
the plasma radiusa and the vessel radiusb. A rf voltage of
frequencyv is applied to the toroidal gap~horizontal insu-
lated cut in the conducting shell!. We can assume that in thi
model the rf waves are excited by a uniformly distribut
electric field on the surface of the vessel,

E~b!5 1
2 ~EAe2 ivt1c.c.!eu .

In this simplified consideration we assume the dielec
properties of plasma to be that of an unmagnetized, perfe
conducting plasma. In the frequency ranges of interesv
!vci or v*vci ,

l5
va

c
!1. ~1!

First we find the unperturbed em fields. From Maxwel
equations we find that the nonzero field components sati
ing the boundary conditionEu(a)50 are

Eu5
dEA

d221

~r 2a!~r 1a!

ar
, ~2!

Bz5
2

il

dEA

d221
, ~3!

where d5b/a and Eq. ~1! is used. The time averaged
pressure on the plasma surface is

FIG. 1. Geometry for the resistive wall stability analysis.
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In the frequency range under consideration we neglect
contribution to the rf pressure from the component of elec
field normal to the plasma surface.

Now using a perturbative approach we find the rf pre
sure on a perturbed plasma surface. Consider a surface
turbation of the form,

r s5a1 1
2 ~Aeimu1 ikz1c.c.!. ~4!

Then including the terms of the first order inA, the two unit
vectors tangential to the perturbed surface are

t15 1
2 S i

m

a
Aeimu1 ikz1c.c.Der1eu ,

t25 1
2 ~ ikAeimu1 ikz1c.c.!er1ez .

For a perturbed plasma surface, the rf fields in t
vacuum layer are a superposition of the unperturbed field
Eqs.~2!, ~3! and a perturbation. The amplitudes of perturb
rf fields satisfying Maxwell’s equations are

Ez5@B1I m~ ukur !1C1Km~ ukur !#eimu1 ikz1@B2I m~ ukur !

1C2Km~ ukur !#e2 imu2 ikz,

Bz5@D1I m~ ukur !1F1Km~ ukur !#eimu1 ikz

1@D2I m~ ukur !1F2Km~ ukur !#e2 imu2 ikz,

Bu52
iv

cuku @B1I m8 ~ ukur !1C1Km8 ~ ukur !#eimu1 ikz

1
m

rk
@D1I m~ ukur !1F1Km~ ukur !#eimu1 ikz

1 ‘ ‘ 2, ’ ’

Eu5
m

rk
@B1I m~ ukur !1C1Km~ ukur !#eimu1 ikz

1
iv

cuku @D1I m8 ~ ukur !1F1Km8 ~ ukur !#eimu1 ikz

1 ‘ ‘ 2, ’ ’

where the terms with ‘‘2’’ are obtained from the terms with
‘‘ 1’’ by changingm→2m andk→2k, and the orderm of
the Bessel functions is positive~subscript m refers toumu!.
Also it is assumed thatv/c!uku which is consistent with the
condition of Eq.~1!.

The boundary conditionsEu(b)50 andEz(b)50 give

C152
I m~ ukub!

Km~ ukub!
B1, F152

I m8 ~ ukub!

Km8 ~ ukub!
D1. ~5!

The same relations hold for the coefficients with ‘‘2.’’
The boundary conditions on the plasma surface

E(r s)•t1,250. Including terms of first order inA, one ob-
tains

2ẼA

1

2
A1

m

k
f rfB

11
iv

cuku
grf8D150, ~6!
 license or copyright, see http://pop.aip.org/pop/copyright.jsp



-

s

ta

th
t

bi

a

b
tl
a

of
th
qu

r

rf

-

u-

At
he
f
nd

on-
g-
ce

each

5183Phys. Plasmas, Vol. 8, No. 12, December 2001 Self-consistent treatment of stabilization . . .
B1I m~ ukua!1C1Km~ ukua!50, ~7!

whereẼA5dEA /(d221) and

f rf5I m~ ukua!2
I m~ ukub!

Km~ ukub!
Km~ ukua!,

grf5I m~ ukua!2
I m8 ~ ukub!

Km8 ~ ukub!
Km~ ukua!,

grf85I m8 ~ ukua!2
I m8 ~ ukub!

Km8 ~ ukub!
Km8 ~ ukua!.

The equation forB2 and D2 is obtained by changingA
→A* in Eq. ~6!.

We solve the Eqs.~5!–~7! and find the perturbed ampli
tude

Bz5
grf

grf8

2iẼAuku
l

1

2
~Aeimu1 ikz1c.c.!.

Then the total time averaged rf pressure on the plasma
face with the linear accuracy inA is

P5
1

16p
U 2

il
ẼA1

grf

grf8

2iẼAuku
l

1

2
~Aeimu1 ikz1c.c.!U2

'P01 p̃rf

1

2
~Aeimu1 ikz1c.c.!, ~8!

with

p̃rf52P0

grf

grf8
2uku.0.

Sincep̃rf.0, the perturbed rf pressure profile has a s
bilizing effect on the plasma surface.

In the present analysis the unperturbed rf pressureP0 is
much smaller than the typical magnetic pressure in
plasma. It is assumed that the influence of rf pressure on
plasma equillibrium is negligible.

Although small, the rf pressure can influence the sta
ity properties of the plasma. From Eq.~8! it follows that the
perturbed rf pressure is proportional toA/(b2a) (grf8}b
2a), while the MHD force acting on the perturbed plasm
column is proportional toA/a ~for the low frequencies of
resistive wall modes!. Thus for a sufficiently thin vacuum
layer the perturbed MHD and rf forces can be compara
even when the unperturbed rf pressure is significan
smaller than the magnetic pressure, which may lead to
effective stabilization of external modes in RFPs.

III. CALCULATION OF THE GROWTH RATES

We follow closely the derivation of the growth rates
the resistive wall modes given in Chapter 9 in Ref. 10 for
general screw pinch. We modify the pressure balance e
tion on the plasma–vacuum boundary by including the
pressure calculated in the previous section.

The length of the cylinder is 2pR0 . The equilibrium
magnetic field is given byB5Bu(r )eu1Bz(r )ez and the per-
turbations are of the formj(r )5j(r )exp@i(mu1kz)#. The
Downloaded 10 Jan 2005 to 128.104.223.90. Redistribution subject to AIP
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displacement is decomposed asj5jer1heh1j ib, where
eh5(Bzeu2Buez)/B andb is the unit vector in the direction
of B.

In the vacuum region I~see Fig. 1! the perturbed MHD
magnetic field amplitudes~separate from the perturbed
fields! are

B1r5k@c1I m8 ~ ukur !1c2Km8 ~ ukur !#,

B1u5
im

r
@c1I m~ ukur !1c2Km~ ukur !#,

B1z5 ik@c1I m~ ukur !1c2Km~ ukur !#.

In the vacuum region II the amplitudes are

B1r5kc5Km8 ~ ukur !, B1u5
im

r
c5Km~ ukur !,

B1z5 ikc5Km~ ukur !.

Within the resistive wallB1 satisfies a magnetic diffu
sion equation,

]B1

]t
5

hc2

4p
¹2B1 .

This equation is solved in a thin wall limitd!b. Since the
growth rateg will be of order g;1/tD5hc2/4pbd, then
4pg/hc2;1/bd@k21m2/b2 and

B1r5c3el1~r 2b!1c4e2l1~r 2b!,

with l1
254pg/hc2. The remaining components ofB1 are

given by the two relations,

m

b
B1z2kB1u50,

i S m

b
B1u1kB1zD52l1@c3el1~r 2b!2c4e2l1~r 2b!#.

The first equation follows from tangential continuity arg
ments and the fact that (m/r )B1z5kB1u in both regions I
and II. The second equation is a consequence of“•B150.

To find a dispersion relation forg, we match the solu-
tions in each region by applying the boundary conditions.
the boundary of the regions I, II and the wall one of t
tangential components ofB1 and the normal components o
B1 are continuous~due to the above equation the seco
tangential component is continuous automatically!.

Across the region I-plasma interface the boundary c
ditions require continuity in the normal component of ma
netic field @B1r #50 and the perpendicular pressure balan

Fp11
BB1

4p
1j“S p1

B2

8p D G50.

To evaluate these conditions it is necessary to express
of the plasma quantities in terms of the value ofj on the
boundary.

The perturbed magnetic fieldB1 can be found from
MHD equations in terms ofj,

B1r5 i S m

r
Bu1kBzD j,
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 2. gtD vs ka. ~a! ma52.4, ~b!
ma52.5, ~c! ma52.6. In all cases:
~---! P0 /PB50, ~—! P0 /PB50.05;
b/a51.1, m51.
m
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B1u5 ikBh2~jBu!8,

B1z52
1

r
~r jBz!82

im

r
Bh.

In the low frequency limit the componenth is related toj
~see Appendix C in Ref. 10! by

h5
i

rBk0
2 @G~r j!812kBuj#,

wherek0
25k21m2/r 2, G5mBz /r 2kBu . For simplicity we

assume that no surface currents are present on the plas
vacuum interface and that the plasma pressure de
smoothly to zero at the plasma edge. Then the pressure
ance becomes

BaB1a
p 5BaB1a

v 14p p̃rfja ,

wherep̃rf is defined in Eq.~8!.
Then the boundary conditions across the region I-plas

interface can be written as

k@c1I m8 ~ ukua!1c2Km8 ~ ukua!#5 iF aja ,

iF a@c1I m~ ukua!1c2Km~ ukua!#14p p̃rfja

52
Fa

ak0
2 ~ F̂aja1Faaja8!,

whereF5(m/r )Bu1kBz , F̂5kBz2(m/r )Bu .
Combining these equations with the other four bound

conditions, after some calculations one finds

gtD5
k2b21m2

k2b2Km8 ~ ukub!I m8 ~ ukub!F12
I m8 ~ ukua!Km8 ~ ukub!

I m8 ~ ukub!Km8 ~ ukua!G
3

dW`1dWrf

dWb1dWrf
, ~9!

wheretD54pbd/hc2,

dWrf52p2R0ap̃rfja
2 , ~10!

dW`

~p/2!R0
5E

0

a

~ f j821gj2!dr1F S krBz2mBu

k0
2r 2 D rF

1
r 2L`F2

umu G
a

ja
2 , ~11!

dWb

~p/2!R0
5

dW`

~p/2!R0
1

a2Fa
2

umu ~Lb2L`!ja
2 , ~12!
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where

Lb2L`5L`

I m8 ~ ukua!/Km8 ~ ukua!2I m~ ukua!/Km~ ukua!

I m8 ~ ukub!/Km8 ~ ukub!2I m8 ~ ukua!/Km8 ~ ukua!
,

L`52
umuKm~ ukua!

ukuaKm8 ~ ukua!
,

f 5
rF 2

k0
2 ,

g5S k0
2r 221

k0
2r 2 D rF 212

k2

rk0
4 S kBz2

mBu

r DF.

dWrf defined in Eq.~10! is proportional to the work done by
the forces of rf pressure exerted on the plasma–vacuum
face when this surface is continuously perturbed by incre
ing ja from 0 to its amplitude value.dW` anddWb relate to
dW with a perfectly conducting wall, located atr 5` and
r 5b correspondingly. In the above equation forg we as-
sumed zero plasma pressure.

The functionj(r ) satisfies a differential equation of se
ond order with the regularity conditions atr 50. This means
thatj(r ) is defined by the boundary conditionj(a)5ja . For
a mode unstable without the rf pressure,dW`,0 anddWb

.0. In Eq. ~9! one can assume thatdWrf!dWb . Because
dWrf.0, the rf pressure is a stabilizing influence.

To estimate the changes to the growth rates, we cons
the Bessel function equilibrium~the Taylor state! given by

Bz

B0
5J0~mr !,

Bu

B0
5J1~mr !,

whereB0 is the toroidal field on axis,J0 andJ1 are Bessel
functions. For this stateBz reverses direction with radius i
ma.2.4.

For the estimation ofdW` given by Eq.~11! instead of
an exact functionj(r ) we take the trial functionj(r )5ja ,
0<r<a. This choice is appropriate for an analysis of ext
nal modes. With these assumptions the growth rategtD is
defined by the dimensionless parametersP0 /PB (PB

5B0
2/8p), ma, b/a, m, ka. The modes unstable without r

power are only withm561. Here we consider only thes
modes. Because the growth rate is symmetric with respec
simultaneous changem→2m, k→2k, we consider the
modes withm51.

We calculategtD for several values of the parameterma
corresponding to equilibria with field reversal. Figures 2~a!–
~c! show the dependence ofgtD vs ka for ma
52.4; 2.5; 2.6. On these figuresb/a51.1, m51. The
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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dashed lines aregtD without rf pressure and the solid line
are gtD with P0 /PB50.05. Wheng.0 the mode is un-
stable, and wheng,0 the mode is stable.

From this figure one can see that without the rf press
the mode is unstable for some range of wave numberska.
With the rf pressure the mode is either stabilized or its ma
mum growth rate is reduced by approximately an order
magnitude. If one identifies an equivalent torus of leng
2pR0 , then the wave numberk becomes quantized:ka
5na/R0 . If we take the aspect ratioR0 /a53, then from
Fig. 2 one can see that the mode is stabilized by the rf p
sure for all wave numbers.

This analysis shows that the stabilization of the resist
wall modes in RFPs is possible with application of moder
rf pressure. From this point of view this approach seems
be attractive. Further analysis with a more realistic desc
tion of the dielectric properties of the plasma is necess
however, in order to make a more substantiated conclu
about the applicability of this approach.

IV. RF PRESSURE ON A MAGNETIZED PLASMA

A. Magnetized plasma with a skin layer, v rf™vci

In this section we find the distribution of rf pressure on
perturbed boundary of a magnetized plasma. We consid
plane geometry with a uniform magnetic fieldB0 directed
along thez axis ~see Fig. 3!. The width of vacuum layer isl .
rf electric field is applied at the wall in the direction parall
to the magnetic field in the plasma,

Ez5
1
2 ~EAe2 ivt1c.c.!.

Here we examine the rf frequency rangev!vci such
that the propagation of em waves in plasma is described
resistive MHD model. We also ignore plasma pressure in
model and assume that the plasma density is uniform.

The rf fields of interest penetrate into plasma on a de
of the skin layer. Therefore it is reasonable to assume
uniformity of the magnetic field and of the plasma dens
The rf pressure on the plasma surface is obtained by integ
ing the volume density of rf force across the skin layer.

The sharp plasma boundary model is used here for s
plicity. However we do not expect a significant change of
result if the plasma density is allowed to decay smoothly
zero as long as the length of penetration of rf fields into
plasma is much smaller than the width of the vacuum lay

FIG. 3. Geometry for a magnetized plasma analysis.
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Also it is assumed that in the vacuum region the plas
density and temperature are small enough so that the pla
dielectric properties in this region are that of a vacuum.

We first find em fields in the unperturbed plasma. Li
earized equations for rf fields in the unperturbed plasma

r
]v
]t

5
1

c
j3B0 , E1

v
c

3B05h j ,

“3E52
1

c

]B

]t
, “3B5

4p

c
j .

We find the solution in the form,

E5 1
2 ~Ee2 ivt1c.c.!.

Then the solution in the plasma is

v50,

Ezp5a
EA

sinl1a cosl
eiky0y,

Bxp5
iEA

sinl1a cosl
eiky0y,

j z5
c

4p

ky0EA

sinl1a cosl
eiky0y,

and in vacuum is

Ez5@2sin~vy/c!1a cos~vy/c!#
EA

sinl1a cosl
,

Bx5@cos~vy/c!1a sin~vy/c!#
iEA

sinl1a cosl
,

where

l5v l /c, a5Avh

8p
~11 i !, ky05A4pv

2hc2 ~11 i !.

Then the unperturbed rf pressure on the plasma bounda
given by

P05E
0

` 1

c
^ j zBx&dy5

bb*

16p
,

whereb5EA /(sinl1a cosl).
If the resistivityh is found from the electron–ion colli-

sion rates, then for the boundary plasma withn;5
•1012cm23, T;40 eV, v;105 rad/s the skin depth corre
sponding to the wave numberky0 is ;1 cm.

We assume that the perturbation of the plasma–vacu
boundary,

ys5
1
2 ~Aeikxx1 ikzz1c.c.!

is much smaller than the skin depth, and also that

ukxu,ukzu!uky0u. ~13!

The normal vector to the perturbed surface is

n5 1
2 ~2 ikxAeikxx1 ikzz1c.c.!ex1ey

1 1
2 ~2 ikzAeikxx1 ikzz1c.c.!ez .
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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The total MHD magnetic field is

B5B0ez1
1
2 ~Beikxx1 ikyy1 ikzz1c.c.!. ~14!

Since the perturbed plasma–vacuum boundary stays on
perturbed magnetic surface, thenB"n50 at y50, which
gives

By5 ikzAB0 . ~15!

We consider single-fluid resistive MHD equations wit
out pressure and express each quantity in the form,

f 5 f 01 f 0rf1 f 1 f rf ,

where f 0 is the unperturbed time-independent~equilibrium!
quantity andf 0rf is the unperturbed quantity varying wit
frequencyv. The termsf and f rf are the perturbations to th
equilibrium and rf fields, respectively.

The unperturbed fields are

v050, v0rf50, r0 , r0rf50, j050, j0rf ,

B05B0ez , B0rf , E050, E0rf .

We perform separation of fast~rf! and slow~growth! time
scales. The linearized momentum equation for rf quantitie

r0

]v rf

]t
5

1

c
~ j0rf3B1 j3B0rf1 j rf3B0ez!

and the equation for the volume density of rf force is

f5
1

c
^ j0rf3B0rf1 j0rf3Brf1 j rf3B0rf&. ~16!

From the linearized Ohm’s Law the equation for the
fields is

Erf1
1

c
v rf3B0ez5h j rf .

Where we have taken into account thatuv3B0rfu!uv rf

3B0ezu.
Since the resultant equations are linear with respect t

fields, we can consider equations for their complex am
tudes assuming the time dependence}exp(2ivt). Then after
substituting v rf found from the momentum equation int
Ohm’s Law and usinghv!vA

2/c2, we find

j xrf5
c2vr0

iB0
2 Exrf1

1

B0
~Bxj z0rf1Bx0rfj z!,

j yrf5
c2vr0

iB0
2 Eyrf1

By

B0
j z0rf ,

j zrf5
1

h
Ezrf . ~17!

In the first equation the term (Bx0rf /B0) j z can be neglected
when compared with the term (By /B0) j z0rf in the second
equation. The neglect of this term is accurately justifi
when the fields calculated without this term are substitu
into the original Eqs.~17!.

Substituting these current components and Eq.~14! into
the Maxwell’s equations, we find
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he

is

rf
i-

d
d

¹2Ex1
v2

vA
2 Ex2

]

]x
¹•E

52
ivky0b

c

1

2 S Bx

B0
eikxx1 ikyy1 ikzz1c.c.Deiky0y,

¹2Ey1
v2

vA
2 Ey2

]

]y
¹•E

52
ivky0b

c

1

2 S By

B0
eikxx1 ikyy1 ikzz1c.c.Deiky0y,

¹2Ez1
4p iv

hc2 Ez2
]

]z
¹•E50. ~18!

In Eqs.~18! we omitted the subscript ‘‘rf’’ in the electric field
components on the left-hand side.

We look for a particular solution of the system of Eq
~18! in the form,

Ẽ5Ẽ1eikxx1 iky0y1 ikzz1Ẽ2e2 ikxx1 iky0y2 ikzz,

where we assumed for simplicity thatky50. The particular
solution incorporates the effect of the MHD perturbation
the rf waves. Then for the amplitudes with ‘‘1,’’ Eqs. ~18!
become

2k2Ex1
v2

vA
2 Ex1kx~kxEx1ky0Ey1kzEz!

52
ivky0b

c

1

2

Bx

B0
,

2k2Ey1
v2

vA
2 Ey1ky0~kxEx1ky0Ey1kzEz!

52
ivky0b

c

1

2

By

B0
, ~19!

2k2Ez1
4p iv

hc2 Ez1kz~kxEx1ky0Ey1kzEz!50,

with k25kx
21ky0

2 1kz
2 .

Solving Eqs.~19! and the corresponding equations f
the amplitudes with ‘‘2,’’ we find the particular solution of
the nonuniform system of Eqs.~18!,

Ẽx5
ivbkx

2cB0ky0

BxkxS 2kx
21

v2

vA
2 1ky0

2
kz

2

kx
2D 2Byky0~kx

21kz
2!

ky0
2 kz

21
v2

vA
2 kx

2

3eikxx1 iky0y1 ikzz1 ‘ ‘ 2, ’ ’ ~20!

Ẽz52
ivbky0kz

2cB0

Bxkx1Byky0

ky0
2 kz

21
v2

vA
2 kx

2

eikxx1 iky0y1 ikzz1 ‘ ‘ 2, ’ ’

~21!
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B̃x52
ibky0

2 kz

2B0

Bxkx1Byky0

ky0
2 kz

21
v2

vA
2 kx

2

eikxx1 iky0y1 ikzz1 ‘ ‘ 2, ’ ’

~22!

B̃z52
ib

2B0

BxS ky0
2 kz

21
v2

vA
2 kx

2D 2Bykxkz
2ky0

ky0
2 kz

21
v2

vA
2 kx

2

3eikxx1 iky0y1 ikzz1 ‘ ‘ 2. ’ ’ ~23!

In the above equations the terms with ‘‘2’’ are obtained from
those with ‘‘1’’ by changing kx→2kx , kz→2kz and Bx

→Bx* , By→By* . In the derivation of the above equation
and in the following calculations the condition of Eq.~13! is
used to simplify the analysis.

Now we find the general solution of Eqs.~18! without
the right-hand side. We find this solution in the form,

E5Eeikxx1 ikyy1 ikzz,

the wave numberky is now different from that in MHD
magnetic field perturbation~which we have zeroed!. Then
Eqs.~18! without the right-hand side become

S kx
22k21

v2

vA
2 DEx1kxkyEy1kxkzEz50,

kxkyEx1S ky
22k21

v2

vA
2 DEy1kykzEz50, ~24!

kxkzEx1kykzEy1S kz
22k21

iv2

h̃c2DEz50,

whereh̃5vh/4p. The Eqs.~24! lead to a dispersion equa
tion which has two roots forky

2 when kx , kz , and v are
fixed. These roots are

ky1
2 52kx

22kz
21

v2

vA
2 ,

ky2
2 52kx

21ky0
2 2

ivA
2

h̃c2 kz
2 .

The relations between the field components correspondin
each root are found from Eqs.~24!. The rootky1 corresponds
to the compressional Alfve´n wave propagating from the
boundary toward the plasma. This wave is excited by
perturbation. For this branch

Ey52
kx

ky1
Ex , Ez50,

Bx5
c

v

kxkz

ky1
Ex , By5

c

v
kzEx , Bz52

c

v

kx
21ky1

2

ky1
Ex .

The rootky2 corresponds to a decaying wave, localized a
proximately in the skin layer, for which

Ex5
kxkz

kz
22

v2

vA
2

Ez , Ey5
ky2kz

kz
22

v2

vA
2

Ez ,
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Bx52
c

v

ky2

v2

vA
2

kz
22

v2

vA
2

Ez , By5
c

v

kx

v2

vA
2

kz
22

v2

vA
2

Ez , Bz50.

This branch is a modification of the shear Alfve´n wave due
to finite h andEz .

Now the general solution of the uniform part of Eq
~18! is

Ex5Ex1
1 eiky1y1 ikxx1 ikzz1

kxkz

kz
22

v2

vA
2

Ez2
1 eiky2y1 ikxx1 ikzz

1 ‘ ‘ 2, ’ ’

Ez5Ez2
1 eiky2y1 ikxx1 ikzz1 ‘ ‘ 2, ’ ’

Bx5
c

v

kxkz

ky1
Ex1

1 eiky1y1 ikxx1 ikzz

2
c

v

ky2

v2

vA
2

kz
22

v2

vA
2

Ez2
1 eiky2y1 ikxx1 ikzz1 ‘ ‘ 2, ’ ’

Bz52
c

v

kx
21ky1

2

ky1
Ex1

1 eiky1y1 ikxx1 ikzz1 ‘ ‘ 2. ’ ’

The terms with ‘‘2’’ are obtained from those with ‘‘1’’ by
changingkx→2kx , kz→2kz . In these equations the coe
ficientsEx1

6 andEz2
6 are arbitrary.

Perturbed fields in the vacuum layer, satisfying t
boundary conditions on the conducting wall aty52 l are

Ex5Ex1
1 eikxx1 ikzz~eikyy2e2 ikyye22ikyl !1 ‘ ‘ 2, ’ ’ ~25!

Ez5Ez1
1 eikxx1 ikzz~eikyy2e2 ikyye22ikyl !1 ‘ ‘ 2, ’ ’ ~26!

Bx5
ckx

vky
~Ex1

1 kz2Ez1
1 kx!e

ikxx1 ikzz~eikyy1e2 ikyye22ikyl !

1 ‘ ‘ 2, ’ ’ ~27!

Bz5
ckz

vky
~Ex1

1 kz2Ez1
1 kx!e

ikxx1 ikzz~eikyy1e2 ikyye22ikyl !

1 ‘ ‘ 2, ’ ’ ~28!

whereky5 iAkx
21kz

2, and the coefficientsEx1
6 and Ez1

6 are
arbitrary and different from those in the plasma.

We match the tangential components of electric a
magnetic fields in plasma and in vacuum at the positionys

5 1
2(Aeikxx1 ikzz1c.c.). Then to the first order inA we find
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Ez1
1 ~12e22ikyl !2Ez2

p15Ẽz
1 ,

Ex1
1 ~12e22ikyl !2Ex1

p12
kxkz

kz
22

v2

vA
2

Ez2
p15Ẽx

1 ,

kz

ky
~11e22ikyl !~Ex1

1 kz2Ez1
1 kx!1

kx
21ky1

2

ky1
Ex1

p15
v

c
B̃z

1 ,

kx

ky
~11e22ikyl !~Ex1

1 kz2Ez1
1 kx!2

kxkz

ky1
Ex1

p1

1

ky2

v2

vA
2

kz
22

v2

vA
2

Ez2
p152

A

2

v

c
bky01

v

c
B̃x

1 .

Similar equations are for the coefficients with ‘‘2.’’ In the
above equations we omitted superscripts ‘‘v ’’ in the vacuum
coefficients. SubstitutingEz1

1 and Ex1
1 from the first two

equations into the second two, we find

S kz
2

ky
n1

kx
21ky1

2

ky1
DEx1

p11
kz

ky
n

kx

v2

vA
2

kz
22

v2

vA
2

Ez2
p1

52
kz

ky
n~kzẼx

12kxẼz
1!1

v

c
B̃z

1 ,

S kxkz

ky
n2

kxkz

ky1
DEx1

p1

1S ky2

v2

vA
2

kz
22

v2

vA
2

1
kx

ky
n

kx

v2

vA
2

kz
22

v2

vA
2

D Ez2
p1

52
kx

ky
n~kzẼx

12kxẼz
1!2

A

2

v

c
bky01

v

c
B̃x

1 , ~29!

where

n5
11e22ikyl

12e22ikyl '2
1

ukyu l
,

since in the cases of interestukyu l !1 ~unstable modes hav
the wave length much longer than the width of the vacu
layer!.

After solving Eqs.~29! one can find the field and curren
components in the plasma and then find the rf pressure
tribution as

P5E
ys

`

f ydy, ~30!

where f is given by Eq.~16!. For keeping the linear inA
accuracy, the integration in Eq.~30! should be performed
only accross the skin layer.
Downloaded 10 Jan 2005 to 128.104.223.90. Redistribution subject to AIP
is-

Careful analysis of Eqs.~29! and the subsequent calcu
lation of the rf pressure shows that the rf pressure is st
lizing only in the limit whenkz50. In this limit

P5P0F 122

1

l

4pv

hc2 1
1

l 2A4pv

2hc2

4pv

hc2 1
2

l
A4pv

2hc21
1

l 2

3
1

2
~Aeikxx1 ikzz1c.c.!G . ~31!

In order to compare the results in this section with t
ideal case of an unmagnetized perfectly conducting plas
we provide here the equation for the pressure distribution
the simple model of Sec. II derived for the geometry of th
section~Fig. 3!,

P5
EA

2

16p sin2 l F122
kx

2

ukyu2l

1

2
~Aeikxx1 ikzz1c.c.!G . ~32!

The correction to the unperturbed pressure in the ab
equation is inversly proportional to the width of the vacuu
layer l . The coefficient in front of the plasma surface di
placement is negative because they axis is directed towards
the plasma now.

From Eq.~31! one can see that in the limitkz50 this
equation reproduces the simplified profile of Eq.~32! ~ukxu
5ukyu for kz50! when the width of the vacuum layerl is
bigger than the skin depth.

Equation~31! is valid roughly whenkz,v/vAAn. This
restriction onkz is very limiting; it implies that the rf pres-
sure in a magnetized plasma is stabilizing only for pertur
tions with m50 ~which is not the case of interest for th
resistive wall modes!.

When kz@v/vAAn ~this condition includesm51 per-
turbation in cylindrical geometry for typical plasmas!, then
the correction to the unperturbed pressureP0 is roughly by a
factor n smaller than that given by Eq.~32! @the relation of
Eq. ~15! is taken into account for this estimation#. In this
case this correction is of the same order of magnitude
previously neglected terms, which means that it is z
within the accuracy of our calculations.

This significant change of the rf pressure distribution
the magnetized plasma is due to the change of the w
polarization in the magnetic field whenkzÞ0 relative to the
wave polarization in unmagnetized plasma. This results
erasing the perturbed rf pressure when the plasma boun
is perturbed, so that the rf pressure neither stabilizes
destabilizes the plasma surface.

The unperturbed rf fields are driven with the wave nu
ber kz50, so that the Alfve´n resonance (kz5v/vA) is not
excited directly. One can assume thatkz of the perturbation is
discrete~kz corresponds tom in cylindrical geometry! and in
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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general the condition for excitation of Alfve´n resonance is
not satisfied in the skin layer. Due to this we do not consi
special case of the presence of Alfve´n resonance in this
model.

B. Magnetized plasma with a skin layer, v rfœvci

In this section we briefly outline the calculations a
results for the rf pressure distribution in the case of rf f
quencies in the rangev*vci . For these frequencies the d
electric properties of a magnetized plasma are qualitativ
different from those considered in the previous section,
might lead to a stabilizing rf presure distribution. A separ
analysis is necessary to obtain the result in this case.

In this range of frequencies the propagation of em wa
in plasma is properly described by a collisionless two flu
model. For the plasma parameters of the previous sec
the skin depth now is a fraction of 1 cm. As before w
neglect the plasma pressure contribution, then this mode
sults in the description of the plasma dielectric properties
a cold plasma dielectric tensor.

We use the same coordinates as in the previous sec
and again the driven rf electric field is parallel to the ma
netic fieldB0 .

If l5v l /c, then the nonzero components of the unp
turbed rf fields are in vacuum,

Ez5F2sin~vy/c!1
v

vpe
cos~vy/c!G EA

sinl1
v

vpe
cosl

,

Bx5Fcos~vy/c!1
v

vpe
sin~vy/c!G iEA

sinl1
v

vpe
cosl

,

and in plasma,

Ezp5
v

vpe

EA

sinl1
v

vpe
cosl

eiky0y,

Bxp5
iEA

sinl1
v

vpe
cosl

eiky0y,

whereky05 ivpe /c.
Again we assume that the perturbation of the plasm

vacuum boundary is much smaller than the skin depth
that the condition of Eq.~13! is satisfied. We perform the
linearization of the two fluid equations about the unperturb
oscillating quantities. Then we separate slow and fast t
scales. We find that the time averaged force per unit volu
acting on the plasma is

f5
1

c
^ j z0rfBx0rfey1 j z0rfez3Brf1 j zrfBx0rfey&. ~33!

In the derivation of this equation some smaller~for typical
RFP plasmas! terms were neglected.
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After tedious calculations one can find that the equatio
for the perturbed rf electric fields are similar to those of E
~19! of the previous section,

2k2Ex1
v2

c2 «'Ex1
v2

c2 igEy1kx~kxEx1ky0Ey1kzEz!

52
ivky0b

c

1

2

Bx

B0
,

2k2Ey1
v2

c2 «'Ey2
v2

c2 igEx1ky0~kxEx1ky0Ey1kzEz!

52
ivky0b

c

1

2

By

B0
,

2k2Ez1
v2

c2 « iEz1kz~kxEx1ky0Ey1kzEz!

52
iky0bkz

c

1

2
vez, ~34!

where «' , « i , g are the components of the cold plasm
dielectric tensor~see, e.g., Ref. 11!,

«5S «' ig 0

2 ig «' 0

0 0 « i

D ,

and the quantities on the right-hand side of Eqs.~34! corre-
spond to MHD perturbations.

As in the previous section we find the general solution
Eqs.~34! and match it with the solution in the vacuum lay
applying similar boundary conditions on the plasma–vacu
surface. The resultant rf pressure distribution is similar
that obtained in the previous section. In the limitkz50 the
result of Eq.~32! is reproduced. As in the low frequency ca
this result is very restrictive. It is valid forkz

,(v/c)Au«'u/n. For kz@(v/c)Au«'u/n the correction to
the unperturbed pressure is roughly a factorn smaller than
that given by Eq.~32!. Again this restricts the stabilizing
effect only tom50 perturbations.

C. Zero skin depth limit

We consider here the range of frequenciesv*vci . This
range is investigated in the previous section with the assu
tion that the amplitude of plasma displacementA is smaller
than the skin depth. Since the skin depth for these frequ
cies is relatively small, this assumption may be violated.
order to have a complete picture about the perturbation o
pressure, we consider here the limit when the skin dept
much smaller thanA. Because the expressions in this secti
are relatively simple, we can make a more definite conc
sion on why the perturbed rf pressure is diminished forkz

Þ0.
In this limit the electric field component parallel to th

magnetic field in plasma is shielded, so that only one~propa-
gating! branch is left for the rf fields in plasma. The approx
mate rf fields in plasma are
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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Ex5Ex1
p1eiky1y1 ikxx1 ikzz1Ex1

p2eiky1y2 ikxx2 ikzz,

Ez50,

Bx52
ckz

v

kxky12
v2

c2 ig

kx
21kz

22
v2

c2 «'

Ex1
p1eiky1y1 ikxx1 ikzz1 ‘ ‘ 2, ’ ’

Bz52
c

v

ky1S kz
22

v2

c2 «'D1kx

v2

c2 ig

kx
21kz

22
v2

c2 «'

3Ex1
p1eiky1y1 ikxx1 ikzz1 ‘ ‘ 2, ’ ’

the terms with the coefficients with ‘‘2’’ are obtained by
changingkx→2kx , kz→2kz . The wave numberky1 in the
above equations is the root of a cold plasma dispersion e
tion with fixed kx , kz , v.

We now match the vacuum solution of Eqs.~25!–~28!
with the plasma solution. The conditionE"B50 on the
plasma–vacuum boundary gives

Ez1
1 5

v

c

b
1

2
A

12e22ikyl , ~35!

Ez1
2 5

v

c

b
1

2
A*

12e22ikyl . ~36!

From the conditionEv
•@n3B#5Ep

•@n3B# we find

Ex1
1 ~12e22ikyl !5Ex1

p1 , ~37!

Ex1
2 ~12e22ikyl !5Ex1

p2 , ~38!

and fromBv
•B5Bp

•B we have

ib
1

2

Bx

B0
1

c

v

kz

ky
~Ex1

1 kz2Ez1
1 kx!~11e22ikyl !

52
c

v

ky1S kz
22

v2

c2 «'D1kx

v2

c2 ig

kx
21kz

22
v2

c2 «'

Ex1
p1 , ~39!

ib
1

2

Bx*

B0
1

c

v

kz

ky
~Ex1

2 kz2Ez1
2 kx!~11e22ikyl !

52
c

v

ky1S kz
22

v2

c2 «'D2kx

v2

c2 ig

kx
21kz

22
v2

c2 «'

Ex1
p2 . ~40!

We solve Eqs.~35!–~40! to find the perturbedBx com-
ponent in the vacuum layer given by Eq.~27!. This compo-
nent is used to find the perturbed rf pressure distribution
the plasma surface. After some calculations we find
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n

Bx
1}

kxbs1A2 ibkz

1

2

Bx

B0

kz
2

ky
1

2s1

n

, ~41!

where

s15

ky1S kz
22

v2

c2 «'D1kx

v2

c2 ig

kx
21kz

22
v2

c2 «'

andBx on the right-hand side of Eq.~41! is the amplitude of
the perturbed MHD magnetic field on the plasma bounda

In the limit kz50 the rf pressure perturbation found wit
Bx given by Eq.~41! is the same as in the simplified case
Eq. ~32! ~l @c/vpe is assumed!. This limit is valid roughly
for kz,(v/c)Au«'u/n. In the case when kz

@(v/c)Au«'u/n, the first term in the denominator in Eq
~41! dominates and the pressure perturbation is roughly b
factor of n smaller than that given by Eq.~32! @here we
assumed that in Eq.~41! Bx;By5 ikzAB0#.

From Eq.~41! one can see that the perturbed rf press
is diminished whenkzÞ0. This is because of the presence
the penetrating branch~with the wave numberky1! in the
magnetized plasma. Without the magnetic field,s1→`
(ky1→`) and Eq.~41! results in the ideal pressure distribu
tion of Eq. ~32!.

V. SUMMARY

We have investigated rf wave stabilization of MHD in
stability. This work contains two new elements. First, w
examine stabilization of resistive wall instability, focusing o
the example of an ideal kink instability in the reversed fie
pinch. The motivation is that if rf wave can be confined to
thin vacuum region, then thej 3B force arising from the
perturbed rf wave energy density provides a strong resto
force. Although the wall is resistive to the MHD instability,
traps the higher frequency rf waves. Second, we include
self-consistent effect of the MHD perturbation on the rf wa
dynamics.

We find that the MHD perturbation of the plasma surfa
generates Alfve´n disturbances—a variant of the shear Alfve´n
wave which evanesces into the plasma and a compress
wave which deeply penetrates. If we neglect the Alfve´n wave
generation, then the rf waves can stabilize the ideal k
resistive wall instability for rf wave magnetic fields that a
much less than the equilibrium field. The rf waves simp
evanesce with a resistive skin depth. However, the Alfv´n
waves which are unavoidably generated defeat the rf w
localization and the stabilization. This suppression of sta
lization is found in three qualitatively different plasma cas
discussed in Sec. IV.

Thus, effects due to perturbation of rf intensity cons
ered with the proper description of the plasma dielec
properties should be included in analysis of ponderomo
stabilization of external modes in fusion devices. A succe
ful rf stabilization scheme would require selection of wav
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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which, when perturbed by the MHD instability, only genera
secondary waves which are confined to the plasma edge
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