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Self-consistent treatment of stabilization of resistive wall instabilities
in reversed field pinches by radio-frequency waves
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Stabilization of resistive wall magnetohydrodynaniMHD) instabilities by the force applied by
injected radio-frequencyrf) waves is investigated, including the self-consistent effect of the MHD
perturbation upon the rf waves in the plasma. This effect leads to the generation ohidlfve
disturbances at the frequency of the rf waves and at the wavelé@ngtie magnetic surfagef the

MHD instability. Stabilization of the ideal external kink instability in the reversed field pinch is
considered. If the self-consistent response is neglected, rf waves are confined to the thin vacuum and
edge regions, and provide a restoring force which stabilizes the resistive wall instability at moderate
rf wave amplitude. However, the generation of Alfveisturbances causes the rf waves to penetrate
deeply into the plasma, eliminating the stabilization.2001 American Institute of Physics.
[DOI: 10.1063/1.1416181

I. INTRODUCTION cantly penetrate the wall. For the rf waves the wall appears
o ) essentially as a perfect conductor. Hence, we may expect that
'!'_h_e stabilization of magn_etohydrodynarrﬂMHD) In- rf wave energy density trapped between the highly conduct-
stabilities by the ponderomotive force from externally ap'ing plasma and the wall will provide a restoring force on the

plied rf waves has been studied over the years in varoug, i perturbation of the plasma surface. This picture will

venues. rf stabilization has been investigated for interchangle : .
) ) . . . : oughly apply if the rf waves do not penetrate deeply into the
instabilites in mirror machinek;* external kinks in plagmg PRl P ply

tokamaks® and Rayleigh—Taylor instabilities in liquid met- L .

als (see e.g., Ref.)7 For plasmas, it generally appears tha’cmai:]:lor ?)I(E?g:l tc\z T:r?gggf tfrlwzlda at“'::h;ioﬂas;n : e;r?jells

stabilization requires applied rf fields of large amplitude. Y P T ) 1bp P
(poloida) rf electric field with poloidal mode numbem

In the past analysis of rf stabilization of external modes:_0 Such lectric field polarizati il not t
the self-consistent effect of the MHD perturbation on the rf_ * uch an electric field poarization Wil not generate
lasma flow or plasma waves in the equilibrium plasma. It

waves has not been fully included. We include this effect’ a>M - :
here, and find that self-consistency has a large effect on the W'” simply decay_ resistively into th? p!asma. Thn=0
stabilization. We solve the problem for a particular case ofave can be applied through an oscillating poloidal surface
interest—resistive wall instabilities in the reversed field!©0P voltage. This may be practical if the rf wave frequency
pinch. is much less than_the ion c;_/clotron freque_ncy. ThIS simple

The resistive wall modes are potentially dangerous instaPicture holds true if we consider tha_t thg dielectric response
bilities in long-pulse reversed field pinéRFP experiments.  ©f the rfwaves to the MHD perturbation is that of an unmag-
Several techniques have been proposed to stabilize theSgtized plasma. In this case, the rf waves evanesce into the
modes in RFPs. One of them is the development of an activBlasma a resistive skin depth. For realistic conditions the
feedback stabilization systentsee e.g., Ref.)8The otheris  Skin depth is sufficiently small that the rf energy, concen-
the introduction of a rotating wallsee e.g., Ref.)9If suc-  trated to a small region, is strongly altered by the MHD
cessful, the rf stabilization would be an attractive alternativePerturbation and stabilizes the external kink resistive wall
to these stabilizing methods. instability for rf wave of moderate amplitud@vave mag-

In the reversed field pinch an ideal external kink mode ishetic field much less than the equilibrium figl@his is quite
unstable in the absence of a conducting shell. In the presen&émilar to the stabilization of the Rayleigh—Taylor instability
of a shell of finite resistivity the mode is still unstable, al- in liquid metals.
though its growth time is slowed approximately to the elec-  If we consider the plasma dielectric properties to be that
trical penetration time of the shell. The resistive wall of @ magnetized plasma, the dynamics becomes more inter-
instability—a mode which becomes unstable when a peresting. The effect of the MHD perturbation of the surface on
fectly conducting shell is replaced by a resistive shell—isthe rf waves leads to the generation of Alfie disturbances.
also important in other configurations such as advanced toFhe Alfven disturbances are characterized by the frequency
kamaks and spherical tokamaks. of the rf waves and the wave numbrithin the magnetic

We consider that the plasma is surrounded by a thirsurface of the MHD perturbation. The perturbed surface
vacuum region, which is bounded by a resistive wall. Al-generates two types of disturbances. A decaying wave which
though the magnetic field of the growing MHD mode pen-is a variant of a shear Alfrewave is generated. Were this
etrates the wall, the higher frequency rf waves do not signifithe only response then the rf waves would be confined to the
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In the frequency range under consideration we neglect the
resistive contribution to the rf pressure from the component of electric
wall field normal to the plasma surface.

Now using a perturbative approach we find the rf pres-
sure on a perturbed plasma surface. Consider a surface per-
turbation of the form,

o

=a+ ; (A€M 2y cc). (4)

Then including the terms of the first orderAg the two unit
vectors tangential to the perturbed surface are

m .
_ 1 k
=1 |5Ae'm9+' Z4c.c.le+e,

FIG. 1. Geometry for the resistive wall stability analysis. 7=31(ikAe™ K2+ cc)e +e,.

For a perturbed plasma surface, the rf fields in the
vacuum layer are a superposition of the unperturbed fields of
edge and vacuum region, yielding a strong stabilizing influ-Egs.(2), (3) and a perturbation. The amplitudes of perturbed
ence. However, compressional waves which propagate intf fields satisfying Maxwell's equations are

the plasma are also generated. The rf energy is no longer - " imo+ikz _
trapped to the edge, and the stabilization vanishes. =[B (k) +C " Kp([Klr)]e FIB 7 In(lkIr)

The case of the unmagnetized dielectric response is pre- +C Kpy(|k|r)]eme-ikz,
sented in Sec. l{where the perturbed rf pressure is calcu- . . o ik
lated and Sec. Ill(where the growth rates are calculated B,=[D " In(|kIr)+F"Kny(lk|r)]e
The more realistic case of the magnetized plasma is dis- D1y ([K|r) +F K [K[r) Je~ Mok,

cussed in Sec. IV. We summarize in Sec. V.
iw . .
By=— W[B”r’n(lklr)+C+Kr'n(Iklr)]e'"““"‘Z

II. SIMPLIFIED CONSIDERATION OF RF PRESSURE

m o
4+ — + + + imé+ikz
We consider a cylindrical geometry shown in Fig. 1 with rk[D m([KIr)+ F K[ Kr) Je

the plasma radiua and the vessel radius. A rf voltage of
frequencyw is applied to the toroidal gathorizontal insu-
lated cut in the conducting shglWe can assume that in this m o
model the rf waves are excited by a uniformly distributed Ea:m[BJr'm(|k|r)"‘C+Km(|k|r)]e'mﬁ'+'kZ
electric field on the surface of the vessel,

+H _,n

E(b)=%(EAe—iwt+c.c.)e0. |k|[D Im(|k|r)+F Km(|k|r)]elm0+lkz

In this simplified consideration we assume the dielectric W
- . + =,
properties of plasma to be that of an unmagnetized, perfectly
conducting plasma. In the frequency ranges of intetest where the terms with =" are obtained from the terms with

<wg O W= Wi, “ +" by changingm— —m andk— —k, and the ordem of
wa the Bessel functions is positivieubscript m refers tém|).
A= —<1. (1)  Alsoitis assumed thab/c<|k| which is consistent with the
c

condition of Eq.(1).
First we find the unperturbed em fields. From Maxwell’'s  The boundary conditiong,(b)=0 andE,(b)=0 give
equations we find that the nonzero field components satisfy- In([KlD) N 17(|k|b) .

ing the boundary conditiok ,(a)=0 are Ct=—-——2-B", = 5
Kn(IK[D) KiKID) ©
SE, (r—a)(r+a) . . .
0= , (20 The same relations hold for the coefficients with
-1 ar -
The boundary conditions on the plasma surface are
2 SE, E(rs)- 71,=0. Including terms of first order i, one ob-
BZ:K o1 3 tains
where §=b/a and Eq.(1) is used. The time averaged rf ~ 1 L
pressure on the plasma surface is ZEAZAjL k f’fB T |k| 90" = ©
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B I n(|kla)+C* K(|kla)=0, (7)  displacement is decomposed s ée + ne,+ &b, where
whereE x— 5E /(52— 1) and g;,:B(Bzeg— Bye,)/B andb is the unit vector in the direction
I'm(k|b) In the vacuum region (see Fig. 1 the perturbed MHD
fﬁzlm(|k|a)_m}<m(|k|a)’ magnetic field amplitudegseparate from the perturbed rf
fields) are
SRR LN B = K[ eyl (1Kl + Sk,
v Kn([k[b) ™
im
. (kD) B1y=—[Calm([KIr) +CoKn([KIN)],
9= m(lkla) = ==K/ (|Kla). r
Kin([KlP) By, =iK[Cylm(|Kr) + oK (K]
The equation forB~ and D~ is obtained by changind\ 1 v ) Zem ) '
—.A* in Eq. (6). In the vacuum region Il the amplitudes are
We solve the Eq95)—(7) and find the perturbed ampli- im
tude By =kesKn([K[r), Blngc5Km(|k|r),
Z:% ZIEA|k| }(Aeim()JrikZ_’_C_C.). Blz=ikC5Km(|k|r).
9 N 2

Within the resistive wallB; satisfies a magnetic diffu-
Then the total time averaged rf pressure on the plasma susion equation,

face with the linear accuracy iA is
y (981 _ 7702

2 -
Jt 4

1 2. g2k 1 V*By.
- |— 4+ = - m6+|kz+ C.
P=Tem|n AT gr n 2(A® c.c)

This equation is solved in a thin wall limd<b. Since the
1 growth ratey will be of order y~ 1/7p= 5c?/4wbd, then
~ P0+T)rf§(Ae'm“”'kZ+ c.c), (8) 4wyl pc®~1bd>k?+m?/b? and
with Blr:C3e)\1(rfb)+C4€7)\1(r7b),
with )\§=4Try/ncz. The remaining components &,; are
Pr=— Pog—cf2|k|>0. given by the two relations,
rf

m
SinceP,>0, the perturbed rf pressure profile has a sta- HBlz_kBlez 0,
bilizing effect on the plasma surface.

In the present analysis the unperturbed rf pres§ires (m A1(T—b) Cg(r—b)
much smaller than the typical magnetic pressure in the 1|1 BiotKBiz|=—Ni[Cae™ T —che "t 2]
plasma. It is assumed that the influence of rf pressure on the ] ) ] o
plasma equillibrium is negligible. The first equation follows from tangential continuity argu-

Although small, the rf pressure can influence the stabilMents and the fact tha(r)B,,=kB,, in both regions |
ity properties of the plasma. From E@) it follows that the ~ @nd Il. The second equation is a consequenct® &, =0.
perturbed rf pressure is proportional &/(b—a) (g}b _ T(_) find a dlspersmn relapon foy, we match the_ _solu-
—a), while the MHD force acting on the perturbed pIasmat'OnS in each region by applylng the boundary conditions. At
column is proportional toA/a (for the low frequencies of the boundary of the regions I, Il and the wall one of the
resistive wall modes Thus for a sufficiently thin vacuum tangential cqmponents @&, and the normal c_omponents of
layer the perturbed MHD and rf forces can be comparabld1 @€ continuousdue to the above equation the second
even when the unperturbed rf pressure is signiﬁcantl)}"’mg‘:’m'aI component is continuous automatioally

smaller than the magnetic pressure, which may lead to an _AACross the region I-plasma interface the boundary con-
effective stabilization of external modes in REPs. ditions require continuity in the normal component of mag-
netic field[ B4, ]=0 and the perpendicular pressure balance

BB

1
P+ E+§V

82

Ill. CALCULATION OF THE GROWTH RATES p+ oy =0.

We follow closely the derivation of the growth rates of 1 eyajuate these conditions it is necessary to express each
the resistive wall modes given in Chapter 9 in Ref. 10 for they¢ 1,0 plasma quantities in terms of the valuefobn the
general screw pinch. We modify the pressure balance eAUoundary.

tion on the plasma—vacuum boundary by including the rf o perturbed magnetic field, can be found from
pressure calculated in the previous section. MHD equations in terms o,

The length of the cylinder is 2R,. The equilibrium
magnetic field is given bB=B,(r)e,+ B,(r)e, and the per-

turbations are of the forng(r)=&(r)exdi(mé+ka]. The By =i

m
TBo+sz) ¢,
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In the low frequency limit the component is related toé

(see Appendix C in Ref. 2ty

|
n= W[G(rf) +2kByé],

wherek3=k?+m?/r2, G=mB,/r —kB,. For simplicity we
assume that no surface currents are present on the plasma—
vacuum interface and that the plasma pressure decays

V. A. Svidzinski and S. C. Prager

FIG. 2. yrp vs ka. (@) na=2.4, (b)

pna=2.5, (c) na=2.6. In all cases:
() Po/Pg=0, (—) Py/Pg=0.05;

b/a=1.1, m=1.

-0.8 -04 0

I
0.4ka 0.8

where
I m(IK[@)/K([k|a) = 1 (| K@) /K m([Kk|a)
“ (kb)Y /K ([kIb) — 17 (k| @) /K fy(k|@)
_ ImlKn((Kfa)
T |KaKn(kla) !

Ap—A.=A

_IF?
-
kar2—1 k2 mB,
= 2 — —_— —
( & rF +2rk61 kB~ — )F.

smoothly to zero at the plasma edge. Then the pressure baéWrf defined in Eq(10) is proportional to the work done by

ance becomes
BaBEa: BaBlia+ 47Péa,
wherep,; is defined in Eq(8).

the forces of rf pressure exerted on the plasma—vacuum sur-
face when this surface is continuously perturbed by increas-
ing &, from O to its amplitude valueW.. and W, relate to
SW with a perfectly conducting wall, located at=« and

Then the boundary conditions across the region I-plasma_ p, correspondingly. In the above equation fprwe as-

interface can be written as
k[cl m([kla) +cKp([k[a)]=iF 2&a,
iFa[Cllm(|k|a)+02Km(|k|a)]+4ﬂbrf§a

F. . ,
= F(Faga"' Faaga)a

ko
whereF =(m/r)B,+kB,, F=kB,— (m/r)B,.

sumed zero plasma pressure.

The function(r) satisfies a differential equation of sec-
ond order with the regularity conditions et 0. This means
thaté(r) is defined by the boundary conditiga) = &, . For
a mode unstable without the rf pressudy..<0 and 6W,
>0. In Eqg. (9) one can assume th&W;< W, . Because
6W;>0, the rf pressure is a stabilizing influence.

To estimate the changes to the growth rates, we consider

Combining these equations with the other four boundary€ Bessel function equilibriurtthe Taylor stategiven by

conditions, after some calculations one finds

k?b%+m?
Y= - .
([ k[a)K (k| b)
k?b?K po(|k[b)1 ; kb[l— - ,
(OO 1=, (b))
OW,. + SWy
X Wy oW, )
where rp=4xbd/ 5c?,
W= ZWZROabrffg , (10)
oW, _faf 24 qe)dr 4 krB,—mB,
2Ry~ Jo 1€ 9E0drt || gz —)r
rPALF?]
| S (10
a
W, W, angA g2 .
(7R, (#12)Ry " Tm Ao~ A=), (12)

BZ—J B,,,_J
By olmr), By~ w(ur),

whereBy, is the toroidal field on axis), andJ; are Bessel
functions. For this stat8, reverses direction with radius if
pua>2.4.

For the estimation o6W.,, given by Eq.(11) instead of
an exact functioré(r) we take the trial functioré(r)=¢&,,
O=r=a. This choice is appropriate for an analysis of exter-
nal modes. With these assumptions the growth natg is
defined by the dimensionless parametdPg/Pg (Pg
=B2/87), ua, b/a, m, ka. The modes unstable without rf
power are only withm=*1. Here we consider only these
modes. Because the growth rate is symmetric with respect to
simultaneous changen— —m, k— —Kk, we consider the
modes withm=1.

We calculateyr for several values of the paramejea
corresponding to equilibria with field reversal. Figuréa)2
(c) show the dependence ofyrp vs ka for ua
=2.4; 2.5; 2.6. On these figures/a=1.1, m=1. The
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y Also it is assumed that in the vacuum region the plasma
Bo density and temperature are small enough so that the plasma
— plasma dielectric properties in this region are that of a vacuum.
0 We first find em fields in the unperturbed plasma. Lin-
S earized equations for rf fields in the unperturbed plasma are
Pl v 1 v .
/,/’ vacuum PEZEJXBm E+E><Bo=77]a
o1 P VXE= VXB=
Ea z ~coat’ ¢!
FIG. 3. Geometry for a magnetized plasma analysis. We find the solution in the form,

E= 1(Ee '“'+c.c).
dashed lines arerp without rf pressure and the solid lines
are yrp with Py/Pg=0.05. Wheny>0 the mode is un-
stable, and whery<0 the mode is stable. v=0,

From this figure one can see that without the rf pressure

Then the solution in the plasma is

the mode is unstable for some range of wave numkars , :a.L ikyoy
With the rf pressure the mode is either stabilized or its maxi- P~ 7 sink+ o cosh

mum growth rate is reduced by approximately an order of iE

magnitude. If one identifies an equivalent torus of length Bxp:_—Aeikyoy,
27Ry, then the wave numbek becomes quantizedka SINA + a COSA
=na/R,. If we take the aspect rati®,/a=3, then from c KyoEa _
Fig. 2 one can see that the mode is stabilized by the rf pres- |, 4 tkyoy

" 4 SiN\ + & COSA :
sure for all wave numbers.

This analysis shows that the stabilization of the resistiveand in vacuum is
wall modes in RFPs is possible with application of moderate
rf pressure. From this point of view this approach seems to  E,=[ —sin(wy/c)+ a cog wy/c)]
be attractive. Further analysis with a more realistic descrip-
tion of the dielectric properties of the plasma is necessary,
however, in order to make a more substantiated conclusion B,=[cogwYy/c)+ a sin(wy/c)]
about the applicability of this approach.

Ea
Sin\ + a cos\’

Ea
Sin\ + a cCos\ '

where

IV. RF PRESSURE ON A MAGNETIZED PLASMA \/:7] \/m
A. Magnetized plasma with a skin layer, w <o, A=ollc, a= ﬁ(lﬂ)’ Kyo= 277c7(l+|)'

In this section we find the distribution of rf pressure on aThen the unperturbed rf pressure on the plasma boundary is
perturbed boundary of a magnetized plasma. We consider given by
plane geometry with a uniform magnetic fieR}, directed .
along thez axis(see Fig. 3 The width of vacuum layer ik P.= WE<- B,)dy= BB

0 oC Jzbx)ay

rf electric field is applied at the wall in the direction parallel 167’
to the magnetic field in the plasma,

_ where 8=E/(SinN\+a COS\).
E,=3(Exe”'“'+c.C). If the resistivity 7 is found from the electron—ion colli-

Here we examine the rf frequency range<w.; such Sﬁ;}z ratiegs, Ttii% f\(/)r tielogou(?/datrg plssmda mms
that the propagation of em waves in plasma is described by a em = eV, o radis the skin depth corre-
onding to the wave numbéy, is ~1 cm.

resistive MHD model. We also ignore plasma pressure in thisP .

model and assume that the plasma density is uniform. We assume that the perturbation of the plasma—vacuum
The rf fields of interest penetrate into plasma on a depﬂpoundary,

of the skin layer. Therefore it is reasonable to assume the y =1(Ae**ikZ+cc)

uniformity of the magnetic field and of the plasma density.. .

The rf pressure on the plasma surface is obtained by integra'é much smaller than the skin depth, and also that

ing the volume density of rf force across the skin layer. |kl [kl <[ Kyo - (13
The sharp plasma boundary model is used here for sim- ,

plicity. However we do not expect a significant change of theThe normal vector to the perturbed surface is

result if the plasma density is allowed to decay smoothly to |, _ 1(- ikXAeikxx-%—ikzz_i_C.C_)ex_’_ey

zero as long as the length of penetration of rf fields into the

plasma is much smaller than the width of the vacuum layer. +3(—ik, Atz c)e,.
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The total MHD magnetic field is w2 9
o VBt 2B VE
B=Bge,+ 3 (Be iy ikzycc), (14) VA x
Since the perturbed plasma—vacuum boundary stays on the _ ""kyOfB 1( X gikxtikyytikzy o C)elkyoy
perturbed magnetic surface, th&in=0 at y=0, which c 2\Bg
gives
. ) w? Jd
By=ik,ABq. (15  VE,+ EEY—WV-E
We consider single-fluid resistive MHD equations with-
T Iwk Bl
out pressure and express each quantity in the form, __ %o, e|kxx+|kyy+|kzz+c c.| ey
c 2\B
f=fo+fortf+fy, 0
wheref, is the unperturbed time-independdruilibrium) 2 dmiow d B
quantity andf, is the unperturbed quantity varying with VE,+ 7C2 E.~ EV'E_O' (18)
frequencyw. The termsf andf; are the perturbations to the
equilibrium and rf fields, respectively. In Egs.(18) we omitted the subscript “rf” in the electric field
The unperturbed fields are components on the left-hand side.
. . We look for a particular solution of the system of Eqgs.
vo=0, vor=0, po, Porr=0, ]0=0, Jort, (18) in the form,

Bo=Bo€;, Bor, Eo=0, Eor- E= B+ elkotikyoy+ikz . B g ikt ikyoy—ikyz
We perform separation of fasgtf) and slow(growth) time ’
scales. The linearized momentum equation for rf quantities isvhere we assumed for simplicity thiey=0. The particular
g, 1 solution incorporates the effect qf the MHD perturbation on
o = E(jo”x B-+jXBoitisxXBo&) the rf waves. Then for the amplitudes witht” Egs. (18)
become

and the equation for the volume density of rf force is )
w
—K2Ey+ —3 Ex+ Ky(KyEx+kyoEy+k,E)

1 . .
f= E(JOrfx BorrtjorX Bt X Borp).- (16) VA
. . . |wky0ﬁ 1 B
From the linearized Ohm’s Law the equation for the rf = 2B,
fields is ¢ o
1 _ .o
Erf+ Evﬁx Ber: ) rf- —k Ey+ EEy‘F kyO(kXEX+ kyoEy"F kZEZ)
Where we have taken into account thatXBg|<|v 'wkyoﬁ 1B,
X Bgg|. = — Bo (19

Since the resultant equations are linear with respect to rf
fields, we can consider equations for their complex ampli- miw
tudes assuming the time dependem@xp(—iwt). Then after  —k?E,+ 2 E, Ky (KEx+KyoEy+k,E,) =0,
substitutingwv s found from the momentum equation into K

Ohm's Law and usingyo<v34/c?, we find with k2= K2+ K2, + K2
. wpo . . Solving Egs.(19) and the corresponding equations for
Jxrt= Bz Exrt 0(BxJ z0rt+ Bxortl 2). the amplitudes with “,” we find the particular solution of
the nonuniform system of Eq§18),
. c’wpo E By W2 )
lyd=—57 Byt JzOrfa ks
iBo Bo C iep, B ( K2+ o7 +K2 3 2 — Bykyo(k2+K2)
1 Ex= o2
erf:;Ezrf- (17) ZCBOkyO k2 k2 2 k2
In the first equation the termB(q,¢/Bg)j, can be neglected s @lkooxtikyoytikzz e _ o (20)

when compared with the termB(/Bg)j,o in the second
equation. The neglect of this term is accurately justified
when the fields calculated without this term are substitute — _ 1oBKyokz Bikit B kyo
into the original Eqs(17). 2cBy K2 K24 k2
Substituting these current components and #4) into yotz T2
the Maxwell's equations, we find (21

eikXX+iky0y+ikZZ+u _n
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L2
E _ IBkyOkZ BXkX+ Bykyo eikXX+iky0y+ikzz—|—“ _
X 2 '
2B, 0,0 W,
ky0k2+ v—ikx
(22
2,2, 9, 2
3 B Bx( kyokz+ ka) - Bykxkzkyo
B,=— = 2
2B w
0 kZokZ+ Ekf
@ik tikyoytikz o (23

In the above equations the terms with* are obtained from
those with “+” by changing k,— —k,, k,— —k, and B,
—B}, B,—BJ .
and in the following calculations the condition of H3.3) is
used to simplify the analysis.

Now we find the general solution of Eq&l8) without
the right-hand side. We find this solution in the form,

E= Eeikxx+ikyy+ikzz
the wave numbek, is now different from that in MHD

magnetic field perturbatiofwhich we have zeroed Then
Egs. (18) without the right-hand side become

w2
( k2—k2+ 7 | Bt ki By ki oE,=0,
A

2

2 2. @ _
kxkyEX-i- ky—k +E Ey+ kykZEZ—O, (24
i 2
K K E ot Kok Ey + | K2— K2+ —os | E,= 0
xhzb=x yhz-=y z ',;]CZ z ’

In the derivation of the above equations
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o, o
5 c Vi 5 C “va 5 o
T ) w2 7Y ) w? 7t
K;——= K;——=
Ua A

This branch is a modification of the shear Alivevave due
to finite » andE, .

Now the general solution of the uniform part of Egs.
(18) is

kK
_ Tt aikygytikyx+ik,z Xz + Aikyoy+ikyx+ik,z
EX_Ex]_e y1Y T 1Ky 2Z4 —wZEZZe y2¥ T 1Ky z

Ua

FITISE

_ Tt ak +ikyX+ik,z 4 ¢ Rl
EZ_ Ezze y2Yy T 1Ky 24—

BX=E kxsz+leikyly+ikxx+ikZz
o Ky %
w2
ky2_2'
¢ VA ot ik oy ikt ik
- ZEZZeI y2Y FIKyX+1 24 _,n
w kz_ %
z UA
2. 1,2
B,= — c %E;leikylwikxx+ikzz+ o
w

y1l

where% = wn/4m. The Egs.(24) lead to a dispersion equa- The terms with “-" are obtained from those with +” by

tion which has two roots fokf, whenk,, k,, and w are
fixed. These roots are
2
2 2 2. %
k1= —kKy—k;+ —,
Ua

P2
iva
K2

2 _ 2 2
K=~k Ko~ 502

changingk,— —k,, k,— —k,. In these equations the coef-
ficientsE,; andE,, are arbitrary.

Perturbed fields in the vacuum layer, satisfying the
boundary conditions on the conducting wallyat —1 are

EX:E)—(i-leikxerikZZ(eikyy_efikyye72iky|)+u - (25)

Ez= E;rleikxkaZZ(eikyy_ efikyye72ikyl) 4= (26)

The relations between the field components corresponding to
each root are found from Eq&4). The rootk,, corresponds

to the compressional Alfve wave propagating from the
boundary toward the plasma. This wave is excited by the
perturbation. For this branch

W

cky N A . .
X:_a)k (E;rlkz_ E;rlkx)elkXXJrlkZZ(elkyy_l_e*lkyye*ZIky|)
y

A (27)
Ky
5T Tk, e BO .
c kyk c c K2+ K2 BZ:w_kZ(E;lkz_E;—lkx)eikxx+ikzz(eikyy+e_ikyye_Zikyl)
xKz " 1 ,
e B B B T RE L
yl y1l 44— (28)

The rootky, corresponds to a decaying wave, localized ap-
proximately in the skin layer, for which wherek,=ikZ+kZ, and the coefficient&y; and E;; are
arbitrary and different from those in the plasma.

kuk, kyoK, ) .
E.= 7E;, Ey= 5E,, We match the tangential components of electric and
K2 22_ K2 22_ magnetic fields in plasma and in vacuum at the positign
VA Ua =1(Ae***kZ4 ¢ c.). Then to the first order iA we find
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En(1—e 2% —EPF=E;,

: K.k ~
Exa(l-e 2% —Ef - —Eb =E;,
k2—

2
Ua

2 2
X yl

k .
i (Lre 2D (B kB + =
y yl

W~
p+_ Rt
Exl - c Bz '

z
BN
yl

k . kyk
(e 9 Bk~ Bk —
Yy

?
7
A
Py
-2
Ua

Ky2

p+
z2

+

Aw o~
- E Eﬂkyo'f' EBX .
k2

z
Similar equations are for the coefficients with-2" In the
above equations we omitted superscripts In the vacuum
coefficients. Substitutings,; and E,; from the first two
equations into the second two, we find

k -
2 2 2 X 2
KKK L ke TR,
ky kyl x1 ky 5 w? z2
kz_ 2z
A
kZ =+ =+ Wt
= k_yA(szx _ksz )+ EBZ )
kekz KKy
_ p+
( ky A kyl Exl
? w?
Kyo— Ky—
w2 ky 5 0)2 z2
kg_ 2 I(z_ v
A Ua
Ky ~ ~, Ao o~
= AE kBT 5 ohkot SBLL (29
where

1+e 2k 1
1_e72|ky| |ky|| ’

since in the cases of interd#, || <1 (unstable modes have
the wave length much longer than the width of the vacuu
layer).

After solving Eqs.(29) one can find the field and current
components in the plasma and then find the rf pressure di
tribution as

P

, f,dy, (30)

wheref is given by Eq.(16). For keeping the linear i
accuracy, the integration in E¢30) should be performed

only accross the skin layer.
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Careful analysis of Eq929) and the subsequent calcu-
lation of the rf pressure shows that the rf pressure is stabi-
lizing only in the limit whenk,=0. In this limit

l47w 1 d7rw
__J’__
I pc? 12 N 25c?
P=Py| 1-2
drw 2 4w 1
+t—\—+-
nc? | 27c? |2

i
XE(Ae'kXX“"ZZ—I- c.c) (31

In order to compare the results in this section with the
ideal case of an unmagnetized perfectly conducting plasma,
we provide here the equation for the pressure distribution for
the simple model of Sec. Il derived for the geometry of this
section(Fig. 3),

2

[, K1
k%l 2

P = 16m siEN

1 (Aekxtikzic )], (32

The correction to the unperturbed pressure in the above
equation is inversly proportional to the width of the vacuum
layer |. The coefficient in front of the plasma surface dis-
placement is negative because thexis is directed towards
the plasma now.

From Eq.(31) one can see that in the limi,=0 this
equation reproduces the simplified profile of E82) (|k|
=|ky| for k,=0) when the width of the vacuum layéris
bigger than the skin depth.

Equation(31) is valid roughly wherk,< w/vay/A. This
restriction onk, is very limiting; it implies that the rf pres-
sure in a magnetized plasma is stabilizing only for perturba-
tions with m=0 (which is not the case of interest for the
resistive wall modes

Whenk,> w/vayA (this condition includesn=1 per-
turbation in cylindrical geometry for typical plasmashen
the correction to the unperturbed pressBges roughly by a
factor A smaller than that given by E@32) [the relation of
Eqg. (15) is taken into account for this estimatiprin this
case this correction is of the same order of magnitude as
previously neglected terms, which means that it is zero

nvithin the accuracy of our calculations.

This significant change of the rf pressure distribution in
the magnetized plasma is due to the change of the wave

g_olarization in the magnetic field whdg+0 relative to the

wave polarization in unmagnetized plasma. This results in

erasing the perturbed rf pressure when the plasma boundary
is perturbed, so that the rf pressure neither stabilizes nor
destabilizes the plasma surface.

The unperturbed rf fields are driven with the wave num-
ber k,=0, so that the Alfva resonancek,= w/v,) is not
excited directly. One can assume thaof the perturbation is
discrete(k, corresponds ton in cylindrical geometryand in
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general the condition for excitation of Alfneresonance is After tedious calculations one can find that the equations
not satisfied in the skin layer. Due to this we do not considefor the perturbed rf electric fields are similar to those of Eqgs.
special case of the presence of Alfveesonance in this (19) of the previous section,

model. 2 2

w W
—K2E, + ZEL E, + el Ey + Ke(KeEx+kyoEy+k,E;)

B. Magnetized plasma with a skin layer, w =, _lwkyB 1By

In this section we briefly outline the calculations and ¢ 2B
results for the rf pressure distribution in the case of rf fre- w2 w2
guencies in the range= w;. For these frequencies the di- — k2Ey+ Z8L E,— ?ig ExtKyo(KgEx+KyoEy+K,E;)
electric properties of a magnetized plasma are qualitatively

different from those considered in the previous section, this iwkyoB 1 By
might lead to a stabilizing rf presure distribution. A separate =~ 7 7 5 B_o'
analysis is necessary to obtain the result in this case.

In this range of frequencies the propagation of em waves w?

— L2
in plasma is properly described by a collisionless two fluid KB+ c? e1EzF Ka(KeEytkyoBy+koEy)

model. For the plasma parameters of the previous section, )
the skin depth now is a fraction of 1 cm. As before we _ ikyoBk, 1

I ) = =Uez 34
neglect the plasma pressure contribution, then this model re- c 2V (34

sults in the description of the plasma dielectric properties bXNheres e, g are the components of the cold plasma
Ly &

a cold plasma dielectric tensor. dielectric tensofsee, e.g., Ref. 11
We use the same coordinates as in the previous section, €8 '

and again the driven rf electric field is parallel to the mag- e, ig O
netic fieldBg. N
£= ig e 0/,
If A\=wl/c, then the nonzero components of the unper-
turbed rf fields are in vacuum, 0 0 ¢
r o Ex and the quantities on the right-hand side of E@¢) corre-
E,=| —sinwy/c)+ —cog wy/c) , spond to MHD perturbations.
. @pe sin\ + icos)\ As in the previous section we find the general solution of
Wpe Egs.(34) and match it with the solution in the vacuum layer
applying similar boundary conditions on the plasma—vacuum
B,=| cod wy/c)+ — sin( wy/c) , surface. The resultant rf_ pressure d|str|but|0|j is similar to
I Wpe sinh 4+ -2 cosh that obtained in the previous section. In the likji=0 the
Wpe result of Eq.(32) is reproduced. As in the low frequency case
. this result is very restrictive. It is valid fork,
and in plasma, <(wlc)|e |IA. Fork,>(wl/c)\|e,|/A the correction to
» Ea _ the unperturbed pressure is roughly a factosmaller than
Ezp:w_ —we'kyoy, that given by Eq.(32). Again this restricts the stabilizing
P€ Sin\ + — cos\ effect only tom=0 perturbations.
wpe
iEp _
Bxp:—welkyoy' C. Zero skin depth limit
SiN\ + ——COSA . . .
Wpe We consider here the range of frequencies w.;. This

range is investigated in the previous section with the assump-

Wherek¥0= lwpe/C. . tion that the amplitude of plasma displaceménis smaller
Again we assume that the perturbation of the plasma-;

vacuum boundary is much smaller than the skin depth ang.1an _the ski_n depth. Sincg the skin (_jepth for thes_e frequen-
that the condition of Eq(13) is satisfied. We perform the ies is relatively small, thls.assumptlon may be V|0Ie}ted. In
linearization of the two fluid equations aBout the unperturbed)rder to have a complete picture .ab.out the perturt_)atlon of _rf

N . -~ pressure, we consider here the limit when the skin depth is
oscillating quantities. Then we separate slow and fast tim

scales. We find that the time averaged force per unit volum uch smaller thar\. Because the expressions in this section
S . 9 P Gre relatively simple, we can make a more definite conclu-
acting on the plasma is

sion on why the perturbed rf pressure is diminished Kor
1 _ _ #0.
f= < 20Bxor®+ 12018 X Brit jatBror®y)- (33 In this limit the electric field component parallel to the
magnetic field in plasma is shielded, so that only uepa-
In the derivation of this equation some smaliéor typical  gating branch is left for the rf fields in plasma. The approxi-
RFP plasmasterms were neglected. mate rf fields in plasma are
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— P+ aikyry+ikex+ik,z p— aikyry—ikyx—ik,z
E.= EXl e!Ky1y +iky z +EX1 e'Ky1y —IKx 2

E,=0,

B _—— Ep+eiky1y+ikxx+ikzz+u o
1
X P 5 5 w? x1
I(x_'—kz 7€
. k2 w2 . w2.
— e, | tkezi
5 c y1l| Pz C2 L X CZ g
z— wz

2 2
kx+kz_?8L

X ngeiky1y+ikxx+ikzz+ 0 ,H

the terms with the coefficients with—" are obtained by
changingk,— —Ky, k,— —k,. The wave numbek,, in the

V. A. Svidzinski and S. C. Prager

. 1By
k,Bo"A—iBk,= —
B 2 Bo (41)
X K2 20% ’
ky A
where
w2 a)2
kyl(ki—?sL +ka7ig

g = 2

w
k>2<+ kg— E{SL

andB, on the right-hand side of E¢41) is the amplitude of
the perturbed MHD magnetic field on the plasma boundary.

In the limit k,= 0 the rf pressure perturbation found with
B, given by Eq.(41) is the same as in the simplified case of
Ed. (32 (I>cl/wye is assumed This limit is valid roughly
for k,<(w/c)\|e,[/A. In the case when k,

above equations is the root of a cold plasma dispersion equaz(@/c)y|&, |/A, the first term in the denominator in Eq.

tion with fixedky, k,, o.

We now match the vacuum solution of Eq25)—(28)
with the plasma solution. The conditioB-B=0 on the
plasma—vacuum boundary gives

1
w P28
EZ+l=E 1_e—2|Ry ' (35)
1
o P2%

From the conditiorE’-[nXB]=EP.-[nxB] we find

E(1—e 2% =D, (37)
Exa(1—e 20 =ER, (38)
and fromBY-B=BP.B we have
1By ck, .
| EB—O—F;k—y(E;lkZ_ E;lkx)(l—%e ZIkyl)
(1)2 w2
c kyl(kf— ?sl)Jrkx?ig
-~ = S (39
k2+k2— ZEL
1B} ck, B .
IﬂEB—O‘F;k—y(Exlkz—Ezlkx)(l-f—e 2'ky|)
w2 2
. kyl(kf— ?si)—kx?ig
=—— 2 = (40)

w
ki‘f’ kg— ?SL

We solve Eqs(35)—(40) to find the perturbed, com-
ponent in the vacuum layer given by EQ7). This compo-

(41) dominates and the pressure perturbation is roughly by a
factor of A smaller than that given by Ed32) [here we
assumed that in Ed41) B,~B,=ik,ABy].

From Eq.(41) one can see that the perturbed rf pressure
is diminished wherk,# 0. This is because of the presence of
the penetrating branctwith the wave numbek,,) in the
magnetized plasma. Without the magnetic fietd! — o
(ky1—) and Eq.(41) results in the ideal pressure distribu-
tion of Eq. (32).

V. SUMMARY

We have investigated rf wave stabilization of MHD in-
stability. This work contains two new elements. First, we
examine stabilization of resistive wall instability, focusing on
the example of an ideal kink instability in the reversed field
pinch. The motivation is that if rf wave can be confined to a
thin vacuum region, then thgxB force arising from the
perturbed rf wave energy density provides a strong restoring
force. Although the wall is resistive to the MHD instability, it
traps the higher frequency rf waves. Second, we include the
self-consistent effect of the MHD perturbation on the rf wave
dynamics.

We find that the MHD perturbation of the plasma surface
generates Alfve disturbances—a variant of the shear Alive
wave which evanesces into the plasma and a compressional
wave which deeply penetrates. If we neglect the Affveave
generation, then the rf waves can stabilize the ideal kink
resistive wall instability for rf wave magnetic fields that are
much less than the equilibrium field. The rf waves simply
evanesce with a resistive skin depth. However, the Afve
waves which are unavoidably generated defeat the rf wave
localization and the stabilization. This suppression of stabi-
lization is found in three qualitatively different plasma cases,
discussed in Sec. IV.

Thus, effects due to perturbation of rf intensity consid-
ered with the proper description of the plasma dielectric
properties should be included in analysis of ponderomotive

nent is used to find the perturbed rf pressure distribution ostabilization of external modes in fusion devices. A success-

the plasma surface. After some calculations we find

ful rf stabilization scheme would require selection of waves
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